Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.

Identifieur interne : 001E63 ( Main/Exploration ); précédent : 001E62; suivant : 001E64

Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.

Auteurs : Misato Ohtani [Japon] ; Arika Takebayashi ; Ryoko Hiroyama ; Bo Xu ; Toru Kudo ; Hitoshi Sakakibara ; Munetaka Sugiyama ; Taku Demura

Source :

RBID : pubmed:25740809

Descripteurs français

English descriptors

Abstract

Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.

DOI: 10.1007/s10265-015-0704-0
PubMed: 25740809


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.</title>
<author>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan, misato@bs.naist.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan</wicri:regionArea>
<wicri:noRegion>Japan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takebayashi, Arika" sort="Takebayashi, Arika" uniqKey="Takebayashi A" first="Arika" last="Takebayashi">Arika Takebayashi</name>
</author>
<author>
<name sortKey="Hiroyama, Ryoko" sort="Hiroyama, Ryoko" uniqKey="Hiroyama R" first="Ryoko" last="Hiroyama">Ryoko Hiroyama</name>
</author>
<author>
<name sortKey="Xu, Bo" sort="Xu, Bo" uniqKey="Xu B" first="Bo" last="Xu">Bo Xu</name>
</author>
<author>
<name sortKey="Kudo, Toru" sort="Kudo, Toru" uniqKey="Kudo T" first="Toru" last="Kudo">Toru Kudo</name>
</author>
<author>
<name sortKey="Sakakibara, Hitoshi" sort="Sakakibara, Hitoshi" uniqKey="Sakakibara H" first="Hitoshi" last="Sakakibara">Hitoshi Sakakibara</name>
</author>
<author>
<name sortKey="Sugiyama, Munetaka" sort="Sugiyama, Munetaka" uniqKey="Sugiyama M" first="Munetaka" last="Sugiyama">Munetaka Sugiyama</name>
</author>
<author>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25740809</idno>
<idno type="pmid">25740809</idno>
<idno type="doi">10.1007/s10265-015-0704-0</idno>
<idno type="wicri:Area/Main/Corpus">001D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D95</idno>
<idno type="wicri:Area/Main/Curation">001D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D95</idno>
<idno type="wicri:Area/Main/Exploration">001D95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.</title>
<author>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan, misato@bs.naist.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan</wicri:regionArea>
<wicri:noRegion>Japan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takebayashi, Arika" sort="Takebayashi, Arika" uniqKey="Takebayashi A" first="Arika" last="Takebayashi">Arika Takebayashi</name>
</author>
<author>
<name sortKey="Hiroyama, Ryoko" sort="Hiroyama, Ryoko" uniqKey="Hiroyama R" first="Ryoko" last="Hiroyama">Ryoko Hiroyama</name>
</author>
<author>
<name sortKey="Xu, Bo" sort="Xu, Bo" uniqKey="Xu B" first="Bo" last="Xu">Bo Xu</name>
</author>
<author>
<name sortKey="Kudo, Toru" sort="Kudo, Toru" uniqKey="Kudo T" first="Toru" last="Kudo">Toru Kudo</name>
</author>
<author>
<name sortKey="Sakakibara, Hitoshi" sort="Sakakibara, Hitoshi" uniqKey="Sakakibara H" first="Hitoshi" last="Sakakibara">Hitoshi Sakakibara</name>
</author>
<author>
<name sortKey="Sugiyama, Munetaka" sort="Sugiyama, Munetaka" uniqKey="Sugiyama M" first="Munetaka" last="Sugiyama">Munetaka Sugiyama</name>
</author>
<author>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant research</title>
<idno type="eISSN">1618-0860</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Bryopsida (genetics)</term>
<term>Cell Dedifferentiation (genetics)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Hypocotyl (genetics)</term>
<term>Hypocotyl (growth & development)</term>
<term>Mutation (MeSH)</term>
<term>Organogenesis, Plant (genetics)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Small Nuclear (genetics)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (growth & development)</term>
<term>Tobacco (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (génétique)</term>
<term>Bryopsida (génétique)</term>
<term>Dédifférenciation cellulaire (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Hypocotyle (croissance et développement)</term>
<term>Hypocotyle (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Organogenèse des plantes (génétique)</term>
<term>Oryza (génétique)</term>
<term>Petit ARN nucléaire (génétique)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (génétique)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Tabac (génétique)</term>
<term>Test de complémentation (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Small Nuclear</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
<term>Hypocotyle</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Cell Dedifferentiation</term>
<term>Hypocotyl</term>
<term>Organogenesis, Plant</term>
<term>Oryza</term>
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
<term>Seedlings</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Hypocotyl</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Dédifférenciation cellulaire</term>
<term>Facteurs de transcription</term>
<term>Hypocotyle</term>
<term>Organogenèse des plantes</term>
<term>Oryza</term>
<term>Petit ARN nucléaire</term>
<term>Plant</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Régions promotrices (génétique)</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Complementation Test</term>
<term>Mutation</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
<term>Test de complémentation</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25740809</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>128</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant research</Title>
<ISOAbbreviation>J Plant Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>371-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10265-015-0704-0</ELocationID>
<Abstract>
<AbstractText>Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ohtani</LastName>
<ForeName>Misato</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan, misato@bs.naist.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takebayashi</LastName>
<ForeName>Arika</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hiroyama</LastName>
<ForeName>Ryoko</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kudo</LastName>
<ForeName>Toru</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sakakibara</LastName>
<ForeName>Hitoshi</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sugiyama</LastName>
<ForeName>Munetaka</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Demura</LastName>
<ForeName>Taku</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Plant Res</MedlineTA>
<NlmUniqueID>9887853</NlmUniqueID>
<ISSNLinking>0918-9440</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012342">RNA, Small Nuclear</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C504798">SRD2 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019068" MajorTopicYN="N">Bryopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054337" MajorTopicYN="N">Cell Dedifferentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018546" MajorTopicYN="N">Hypocotyl</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063246" MajorTopicYN="N">Organogenesis, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012342" MajorTopicYN="N">RNA, Small Nuclear</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25740809</ArticleId>
<ArticleId IdType="doi">10.1007/s10265-015-0704-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2008 Feb;66(3):303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Jul;12 (7):3247-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1535687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 08;5:3833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24807620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Dec;51(12):2002-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2011 Feb;46(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20925482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Aug;94(2):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19446021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Sep;160(1):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22811434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jun;25(6):2056-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23771891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(4):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Aug;7(8):1535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8339931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 21;284(34):22568-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Mar;7(3):791-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Dec 16;15(24):7129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9003788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2012 Mar;9(3):302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22336715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Dec 1;8(12):3875-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2583119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Jan;125(1):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9389671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jul;105(3):815-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Aug;36(Pt 4):590-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Mar;8(3):209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 13;281(41):31050-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16901896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 May;30(10):2411-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Mar 28;343(6178):1505-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24652936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 20;276(29):26733-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jul 15;13(14 ):1807-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10421633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Demura, Taku" sort="Demura, Taku" uniqKey="Demura T" first="Taku" last="Demura">Taku Demura</name>
<name sortKey="Hiroyama, Ryoko" sort="Hiroyama, Ryoko" uniqKey="Hiroyama R" first="Ryoko" last="Hiroyama">Ryoko Hiroyama</name>
<name sortKey="Kudo, Toru" sort="Kudo, Toru" uniqKey="Kudo T" first="Toru" last="Kudo">Toru Kudo</name>
<name sortKey="Sakakibara, Hitoshi" sort="Sakakibara, Hitoshi" uniqKey="Sakakibara H" first="Hitoshi" last="Sakakibara">Hitoshi Sakakibara</name>
<name sortKey="Sugiyama, Munetaka" sort="Sugiyama, Munetaka" uniqKey="Sugiyama M" first="Munetaka" last="Sugiyama">Munetaka Sugiyama</name>
<name sortKey="Takebayashi, Arika" sort="Takebayashi, Arika" uniqKey="Takebayashi A" first="Arika" last="Takebayashi">Arika Takebayashi</name>
<name sortKey="Xu, Bo" sort="Xu, Bo" uniqKey="Xu B" first="Bo" last="Xu">Bo Xu</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Ohtani, Misato" sort="Ohtani, Misato" uniqKey="Ohtani M" first="Misato" last="Ohtani">Misato Ohtani</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25740809
   |texte=   Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25740809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020